IMIN CHEN Corollary

نویسنده

  • IMIN CHEN
چکیده

We describe a criterion for showing that the equation s2+y2p = α3 has no non-trivial proper integer solutions for specific primes p > 7. This equation is a special case of the generalized Fermat equation xp + yq + zr = 0. The criterion is based on the method of Galois representations and modular forms together with an idea of Kraus for eliminating modular forms for specific p in the final stage of the method (1998). The criterion can be computationally verified for primes 7 < p < 107 and p = 31.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Modular Galois Representations modulo Prime Powers

On modular Galois representations modulo prime powers Chen, Imin; Kiming, Ian; Wiese, Gabor Published in: International Journal of Number Theory DOI: 10.1142/S1793042112501254 Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Citation for published version (APA): Chen, I., Kiming, I., & Wiese, G. (2013). On modular Galois representations modulo prime power...

متن کامل

On a Result of Imin Chen

The aim of this text is to give another proof of a recent result of Imin Chen, concerning certain identities among zeta functions of modular curves, or, equivalently, isogenies between products of jacobians of these curves. I want to thank Imin Chen for pointing out a mistake in an earlier version of this text. For n ≥ 1 an integer, let X(n)Q be the modular curve which is the compactified modul...

متن کامل

On Siegel’s Modular Curve of Level 5 and the Class Number One Problem

Another derivation of an explicit parametrisation of Siegel’s modular curve of level 5 is obtained with applications to the class number one problem.

متن کامل

On Relations between Jacobians of Certain Modular Curves

We confirm a conjecture of Merel describing a certain relation between the jacobians of various quotients of X(p) in terms of specific correspondences.

متن کامل

MULTI-FREY Q-CURVES AND THE DIOPHANTINE EQUATION a + b = c

We show that the equation a2 +b6 = cn has no nontrivial positive integer solutions with (a, b) = 1 via a combination of techniques based upon the modularity of Galois representations attached to certain Q -curves, corresponding surjectivity results of Ellenberg for these representations, and extensions of multi-Frey curve arguments of Siksek.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008